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inertia tensor (inertias, Jx, Jy, Jz; products, Jxy, Jxz, Jyz)
inertia tensor of the wheel-rotor combination (diagonal)
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angular velocity of the wheel
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separation of some vector from some set

some vector of Eg_,

volume of the hyperparallelepiped spanned by the vectors of a
set B

function of 1z

coordinates in the space E
K-1

error in Y

error in Y,

part of 3?/3aK orthogonal to Ey_,

square of the error bound in Y,

component of the vector a?/aaK on the vector 8?/331

component of the vector Dy on the vector D; 1in a particular
set

component of the vector Dy on the vector Dj in another
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set union

set inclusion
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NONLINEAR SYSTEMS IDENTIFICATION IN PRESENCE OF NONUNIQUENESS
Jean-Noel Aubrun*

Ames Research Center

SUMMARY

This report considers the problem of identifying a set of parameters that
will match the input-output of a mathematical model to that of a physical sys-
tem. Except for particular cases, there has been no practical method to
determine if such parameter values are unique. A general process of parameter
identification is described that addresses this problem and uses geometrical
concepts in terms of which the nonuniqueness problem can easily be defined.

A digital computer algorithm is developed that analyzes the structure of
a space defined by the parameter sensitivity functions and the output data set.
The algorithm deduces an optimal set of parameters to be uniquely identified,
determines the relationships between dependent parameters, and specifies which
parameters can be obtained with a priori knowledge of others. It does not
require canonical or linear equations for the model but maintains the physical
identity of the parameters. A corresponding FORTRAN IV program has been
written.

This technique is illustrated by the identification of the Ames three-
degrees-of-freedom satellite simulator. Examples of nonuniqueness were found
and analyzed successfully by the algorithm, demonstrating its ability to cope
with strongly nonlinear cases.

INTRODUCTION

The relationship between the input and the output of a physical system or
plant may be described in most situations by a mathematical relationship or
model. This paper is concerned with models that depend on a finite set of
parameters and with the identification of these parameters from measurements
of the plant input and output.

General theories of parameter identification have been established (e.g.,
refs. 1 and 2), and specific applications have been made (e.g., refs. 3-7)
primarily to linear systems for which a thorough mathematical analysis can be
performed. For this discussion, a distinction should be made between two
types of parameter identification. In the first type, the goal is to obtain a
mathematical representation of the plant from which it is possible to dupli-
cate input-output sets of measurements- regardless of the actual physics or
dynamics involved in the plant. This is the concern of realization theory.
The algorithm of Ho (ref. 7) and later developments introduced by

*National Research Council Postdoctoral Associate in residence at Ames
Research Center.




Kalman (ref. 4) are typical of this approach. In the second type the form of
the model is obtained first from an analysis of the physical processes occur-
ring in the plant. The parameters in this case have a direct physical meaning
and the goal is to obtain their actual values from input-output measurements.
If these values are known exactly, plant and model will exhibit the same input-
output properties. However, the converse is not true although often implicitly
assumed (i.e., the parameter values that match model and plant input-output
may not be unique).

This report is mainly concerned with the second type of parameter
identification where it is essential to recognize the occurrence of nonunique
solutions for the parameter values. This nonuniqueness may come from param-
eter redundancy or insufficient information in the measurements or both.
While it is possible in linear systems to transform the original parameters
into a uniquely identifiable reduced set (canonical parameters) (ref. 8),
there is no general canonical solution for nonlinear systems. Concerning the
second cause of nonuniqueness, theoretical criteria are available from estima-
tion theory for linear systems, but because they involve idealized arithmetic
operations (such as identically vanishing determinants), they may fail com-
pletely when numerical computation or noisy measurements are used.

To solve the nonuniqueness problem, this report first presents a general
procedure of parameter identification in a more direct and practical way than
has been done previously. This procedure is used as a framework for analyzing
the mechanics of parameter identification on a practical level and allows a
formulation of the nonuniqueness problem that takes into account the uncer-
tainties in real measurements and computations. These uncertainties are
expressed in the relaxation of strict mathematical concepts to the benefit of
approximate ones. It is realized, for instance, that there is no such thing
as a singular matrix with a digital computer and the classical ''linear depen-
dence'" is replaced by a concept of '"linear closeness."

A digital computer algorithm is developed that:
1. Detects the existence of nonuniqueness.

2. Determines which sets of parameters are not uniquely defined and
which are independent.

3. Determines which parameters should have values specified to obtain a
correct answer for the others.

4. Optionally, resets the main identification program with a reduced
number of parameters that can be uniquely identified, the others being left at
a constant value.

This computation technique is applied to data recorded from the Ames
three-degrees-of-freedom satellite simulator. Identification of the inertia
tensor and some linear and nonlinear control elements is performed to provide
a typical illustration of the nonuniqueness problem.




BASIC PARAMETER IDENTIFICATION PROCEDURE

The Plant

The direct measurements of a physical system (plant) may be considered as
a set of quantities that are recorded at different instants of time. It is
convenient here to partition the set into input and output sets. For dynamic
systems, the input is usually defined as some forcing functions that modify
the state of the system. This restriction is unnecessary for the present
approach to the identification problem. Here it will be required only that
the plant be some kind of operator connecting input and output. In the case
of an airplane, for instance, longitudinal stick position could be the input
and pitch rate the output. However, depending upon the type of identification
to be performed, one could also use longitudinal stick position and pitch rate
as input, and pitch acceleration as output.

The Model

To define the plant completely one must know all the output sets that
correspond to all the possible input sets. However, this is not very practi-
cal. Instead one tries to determine what is called a ''model,'" that is some
process by which, for any given set of input values, one is able to obtain the
corresponding set of output values. It will never be possible to do so
exactly, first because of the actual complexity of the plant and because a
finite number of digits have to be used in computation. Hence the model is
only an approximation that describes the plant to the extent that the sets of
input and output values of the model are close in some sense (such as least
squares) to those of the plant. The approximation, however, will focus on the
important properties of the plant, so that its behavior can be predicted or
modified in some desired way.

The model in itself depends upon quantities called the parameters. In
this discussion we will consider only models whose parameters are invariant
with respect to time and of finite number. For instance the mathematical
model of an aircraft may be a system of differential equations describing its
dynamics. The coefficients in these equations, such as stability derivatives,
inertias, and control gains along with the initial conditions, are normally
considered the parameters.

The Identification

The objective of the identification process is to determine, for a given
model form, the values of the parameters that will make the model behave like
the plant. A general process of identification is sketched on figure 1. If
the same input is applied to both model and plant, the best values for the
parameters are those that minimize (with respect to some criterion) the
difference between model and plant outputs. Therefore the identification
algorithm has to compare these outputs and adjust the parameter values until
this minimum is reached.



It is usual, in parameter identification terminology, to distinguish
between ''equation error' and "output error' methods (ref. 6). It should be
pointed out that both of them can be cast into the scheme of figure 1,
provided a judicious choice of input and output is made. Let us consider for
instance a plant defined by the system of differential equations:

X = F(X, U) (1)

where X 1s the state vector and U the control. An output error method
will consider U as the input to a model defined by

X=FfX, 0

and compare the output X of the model to the measured output X of the
plant to obtain the parameters in F. In an equation error method, U and X
can be considered as inputs to a model defined by

X = BE(X, U)
while X is now the model output to be compared to the plant output X.

In the first case the model is differential, in the second it is
algebraic, but in both the only information concerning the parameters is to be
found in the comparison between measured and computed outputs.

Once the form of the mathematical model is specified, two important
questions must be asked:

1. If it is possible to match some particular set of input-output values
of the system to that of the model, using certain values for the parameters,
and is it possible to match every other set with the same parameter values?

2. Is it possible to match the same input-output set with more than one
set of values for the parameters?

The first question relates to the problem of modeling; the second expresses
the problem of uniqueness. A general way to perform the identification must
be studied to understand where the uniqueness problem comes from.

Consider first the case of a single output, say y. Measurements of the
time history y(t) have been made, corresponding to a known input. In this
analysis, digital computation will be considered; hence the output set con-
sists of M discrete values of y corresponding to the instants t;, tj,

., tM, as represented on the top curve of figure 2(a), dotted at the
measurement points. The model depends upon the N parameters of unknown
values, aj, as, . . ., ay. To begin with, these parameters are given some
assumed values, purely arbitrary or based upon a best guess. Since the input
is known, a computed time history y (t) may be obtained from the model,
particularly the M discrete values corresponding to the same instants tq,
ty, . . ., tM. In general, the two time histories of y and y are different
as shown also on figure 2(a), and the problem is to find how the parameters
must be adjusted to make these time histories as similar as possible.

4



An intuitive idea is to change the value of one parameter, say aj, by a
small amount da;, and observe what happens to the time history of y. A
slightly different time history §~+d§1 is obtained (fig. 2(a)), and even-
tually some idea of the effect of the parameter a; and how much it should be
changed could be gained. The same can be done with a,, obtaining another
time history with different characteristics, and so on with the N parameters
of the model. By this trial and error procedure, one might be successful in
matching the two time histories. This technique, called analog matching, has
been fairly successful in the past. It is obvious, however, that it becomes
impractical if the parameters are numerous, although the human mind takes
definite advantage of its pattern recognition ability.

This process may be rationalized by considering the M values of y as
the components of a vector Y, and the M corresponding values of y, as the
components of another vector, Y (fig. 2(b)). Both Y and Y belong to an
M-dimensional space and there is a one-to-one correspondence between a time
history and its representative vector. To say that the time histories are
different is to say that the vector Y and Y are different. Their difference
may be expressed directly by the geometric difference Y - Y, and we define
therefore an M component error vector as

ER = Y - Y

It follows that the discrete time histories will match <ff ER 1is zero.
Consider now what happens when the value of a; is changed. The change in
the time history noted previously has now a very precise meaning, which is the
change d¥; in the vector Y that becomes equal to

§, =9+ af

This M component vector d?l describes unambiguously how the time history
has been modified by the increment da; of the parameter a;. If da; is

small enough, one may write
- faY
le = (aa1> dal

and all the local information concerning the effect of a; upon the time
history is contained in the vector 8Y/3a;. Therefore, the first step in the
identification will be to perturb each parameter a; individually and compute
the corresponding derivatives (M components vectors) 8?/Bai by

5 (i - D
daj daj

It has just been demonstrated that if the values of the parameters are
changed, it is possible to change the vector Y in this M-dimensional space.
It would be desirable to change it in such a way that it will coincide with Y
(fig. 3). If simultaneous increments day, dap, . . ., day are given to the
corresponding parameters, Y will change by an amount



. oY .
dy =21 (—a—a:) dai i=1, N (2)

This relation may be expressed conveniently in matrix form by considering each
parameter as one component of an N-dimensional vector A, and each vector
a?/aai as a column of an M x N matrix DER. Then equation (2) is
equivalent to

dY = DER dA (3)
with
9y (t1)/%a; 3y (t1)/day . . . ay(ty)/day
3y (tp)/da1  dy(tz)/dap . . . 3y(ty)/day
DER = ‘
ay (tp)/3ay 3y (tm)/dap . . . 3y (ty)/day

~

Finally a dA 1is needed such that the corresponding change in Y just
cancels the error ER, that is, such that

ER + DER dA = 0 (4

The left side represents the error after the parameter vector has been
changed by dA, resulting in the change dY in Y as shown on figure 3.
Usually there are more measurements than parameters (M >> N) so that equa-
tion (4) cannot be solved directly. However, a least squares solution may be
obtained by minimizing the quantity (ER + DER dA)2 with respect to dA. A
well-known expression for the solution is given by

! pErT ER (5)

dA = - (DERT DER)”
This solution is valid, of course, provided the inverse of the square N x N
matrix (DERT DER) exists.

This type of equation is found in many identification techniques (refs. 1,
2, 3, 6). It represents a pseudoinversion of DER and has an interesting
geometrical meaning. As has been said, Y and Y belong to an M-dimensional
space (fig. 4) and it is possible to '"move" Y in this space by changing the
value of the parameters. But, since there are only N parameters (N < M),
they define at most N independent directions; that is, Y 1is, in fact, con-
strained to stay in an N-dimensional subspace Zy of the M-dimensional
space. If there were no noise in the measurements, if the model were perfect,
and if it were possible to compute everything exactly, the vector Y would
also belong to this subspace Zy and Y and Y could be made to coincide
exactly, cancelling completely the error ER and therefore obtaining a per-
fect match of the time histories. This situation corresponds algebraically to

6



compatible equations in the system expressed by equation (4). Unfortunately
the conditions expressed above are never met in practice, so Y is always
outside this subspace Zy and cannot be reached by Y. Therefore the best
tack is to reach the orthogonal projection Y, of Y wupon 2ZN. The distance

[(Y - Y)Z]l/2 will then be minimal so that thls can be interpreted as a least
squares solution. Equation (5) expresses nothing but that the real "target"
of Y dis not Y but Y,. Indeed from equations (3) and (5)

d¥ = DER dA = -DER(DERT DER)™' DERT ER = -ER,

It can be shown that ERg is just the orthogonal projection of ER on

by verifying that (ER - ERy) is orthogonal to all the vectors 8?/3Ai which
constitute a local basis in ZN; that is, since these vectors are contained in
the matrix DER,

! perT ER = 0

DERT (ER - ERo) = DERT ER - DERT DER(DERT DER)~
It must be emphasized, however, that equation (5) is not the only way to

operate on Y. There are many different techniques for obtaining a least
squares solution of equation (4) and they may not all require an actual matrix
inversion as in equation (5). But it is very important to note that the pro-
jection property is independent of any technique;1 whatever the method, Y
will always be constrained in some N-dimensional subspace 2y and the param-
eters adjusted in such a way that Y can reach some target Y, in 2Zy. Also
independent of the identification technique itself is the fact that any change
dY in the output of the model has to be related to the change dA in the
parameter vector by

dY = DER dA

This expression defines the local properties of the space 2y. The extremity
of Y 1is therefore constrained on an N-dimensional hypersurface 2N. The
local hyperplane Ey tangent to 2y 1is spanned by the column vectors of DER
(i.e., the N vectors 9Y/0Aj). When DER is constant with respect to the
parameters, 2N 1is also a hyperplane and coincides with Ey everywhere. When
it is not, ZN 1is a curved hypersurface, and equation (5) will not move

toward Yo but toward the projection Y, of Y on EN. Because Yo is
only an approximation for Yo, equation (5) must be iterated. The evolution
of Y YO, and EN during this iterative process is represented schematically
in flgure 5; ¥ has to move .along the curve 2N and the tangent to 2y at ¥
is EN. At the beginning Y is Y(0). Equation (5) approximates Y, by the
projection Yo(l) of Y wupon EN(0). A new value Y(1) is obtained for Y

at the first iteration and the arc (Y(O)Y(l)) on 2N is approximately equal
to the dlstance Y(O)Yo(l) on EN(0) if Y(0) were close to Yo Starting

now with Y(l), a better approximation of Yy 1s obtained, Y o(2). Finally,
when Y(i) is close enough to Yg, then EN(i) and 2N are equivalent to

lWhen weights are used in the minimization of the error (as in maximum
likelihood estimation or in general weighted least squares methods), these
results remain valid provided the output vector is redefined as, say Y', such
that Y' = WY where W is a weighting matrix.



compute the projection of Y, and, in general, any linear property of 2y
will also be found in Ey.

Once Y, is reached, that is, when the time histories are matched as
well as possible (i.e., when ERZ2 is minimum, ER? being the cost of the
identification since it is a measure of how good the match is), one must ask
if it is possible to change the parameters in such a way that the output Y
does not change. If the answer is yes, then it is possible to find another
set of values for the parameters that will match the time histories as well;
hence the parameters cannot be uniquely identified. Since 2y contains all
the properties of the model, it is clear that this nonuniqueness has to be
related to the properties and the structure of 2N, or to those of Ey if
only linear properties are involved.

Before this point is developed, a last word should be said for the
multioutput case. If the system has P outputs, y,;, Yo « - -, yp, each com-
posed of My measurements, then the vector Y is constructed with these
Mo x P quantities. The order in which these measurements are taken to form
the components of Y is of no importance provided the same order is used for
the model output Y. An example of the vectors and matrices involved is given
in expression (6) where Y and Y are M-dimensional with M=MyxP and
(Y - Y) will be zero <Zff the P time histories of the model are equal to
the corresponding time histories of the system. With this definition of Y
and Y, all the previous discussions and results are valid.

Plant Model Matrix of the derivatives of the model output
output output

Y (M) T (M) DER (M x N)

y1(t1) y1(t1) ay1(t1)/0a; 8y1(t1)/ %2, . 3y1(ty)/Bay
y1(ty) y1(t2) 8y (t2) /32, 8y1(t2)/3a, . 3y1(ty)/day
yiltm) | |[vilemy)| [3viltmy)/ear  ayi(tm,)/daz - . . 3Y1(ty,)/day
y2(t1) y2(t1) 8y2(t1)/3a, 8y2(t1)/3a, . 9ya(t1)/3ay
ya(t2) y2(t2) 8y, (tp)/3ay 2 (ty)/das . 3ya(t2)/3ay (6)
ya(tm) [ V2 (tmg) 9y, (tag)/8ay 3y (tMp)/3ap « . . 3y, (tmy)/day
yp(t1) yp(t1) 9yp(t1)/oa; 3yp(t1)/3a, . 3yp(ty)/day
yp(t2) yp(t2) 8yp(tz)/da; 3yp(tz)/day . 3yp(ty)/day
¥p (tyy) ¥p (tMg) ayp(ty,)/3a1 ayp(tyy)/3az - . - BQP(tMo)/BaN




THE NONUNIQUENESS PROBLEM

To avoid any confusion with other possible theoretical definitions, we
have to make clear that the nonuniqueness problem considered here is a practi-
cal one. The only available information is a set of input-output values of
the plant from which the parameters of the model have to be identified. This
could be obtained, for instance, during a flight test and the corresponding
piece of data is of fimite length. It might happen that the identification
using this particular data has nonuniqueness problems, while another piece of
data taken with the same airplane leads to unique values. Therefore the non-
uniqueness is relative to a given set of data, although it might also be an
intrinsic property of the model, in which case it will always be found.

When discussing the identification process it was said that the N
parameters of the model defined locally an N-dimensional subspace Ep, the
basis vectors of this subspace being the M-component vectors 3Y/daj. In
fact this is true only if the basis vectors are linearly independent. Other-
wise EN 1s not truly N-dimensional and the fact that one vector of the
basis can be expressed as a linear combination of some others means that the
effect of one parameter change could be obtained also by a simultaneous change
in some other parameters. Obviously there will not be a unique solution in
this case. If equation (5) is used, the matrix (DERT DER) is singular and the
computation might stop at this time. Unfortunately, the computer will very
likely invert it anyway, because roundoff errors make it generally impossible
to obtain a hard zero for the determinant. The solution obtained in this case
might very well match the time histories because of the adaptative nature of
the algorithm, as we have actually observed on simulated data. If other
techniques are used that do not involve an actual inversion (as in the steep-
est descent method), then a solution is reached anyway. Here again the non-
uniqueness will be unnoticed and wrong conclusions will be drawn if one
observes only the fit in the outputs. One should be careful not to judge
things only for their outer properties, but to understand also the inner
aspect (i.e., in this case, the real structure of the space EN).

Consider a two-dimensional example to begin with, corresponding to a
model with two parameters a; and a,. Here, EN is E, (i.e., a plane) and
is shown on figure 6(a) with the basis vectors 23Y/3a; and 3Y/3a,. The
"target'' is Yg, the projection on E, of some M-dimensional vector Y. The
amounts da; and dap by which the parameters have to be changed are equal to
the components of Yo - Y on the basis, because by definition of the
components

o foY oY
YO -Y = (E) dal + <_33._2> daz (7)

and this is also equal to the change in Y according to equation (2).
Consider now the case of figure 6(b) where the basis vectors are parallel.
Here Yo may be reached by changing either a; or ap, or both. The vectorial
equation (7) collapses in one algebraic equation that of course has an



infinity of solutions in da; and da,. The model does not really depend
separately on a3 and ap but on some function of them (see appendix A). How-
ever, if the true value of, say, a; is known (from other sets of measurements
for instance), it is possible to continue the identification process and
obtain the true value of aj, a; being removed from the perturbation process
and left at its true value. These basic ideas will be extended to the
N-dimensional case, but we have been dealing so far with a strict mathematical
definition of linear dependence and independence. Here there is a definite
boundary between the cases of figures 6(a) and 6(b).

In the real world this yes-or-no situation does not exist and
intermediate states must be considered. Because of noise in measurements, the
actual output of the plant is not Y, but may be somewhere in a domain sur-
rounding Yg. Assuming some kind of boundaries for this uncertainty domain,
as represented on figure 7 by the shadowed area, there are correspondlng
uncertainties in the vectors le and de (shadowed parts of the axis in
figure 7) that in turn correspond to uncertainties in da; and dap. If the
angle between the two vectors aY/da; and 3Y/da, is decreased, these uncer-
tainties increase. If they become, say, one order of magnitude larger than
the parameters themselves, for all practical purpose these parameters are not
uniquely defined. However, the values obtained for these parameters are not
independent of each other, since they must satisfy the constraint that
d¥, + d¥, falls inside the uncertainty domain of Yo. Therefore, if the
angle between the two basis vectors is less than some threshold e, nonunique-
ness will be experienced almost as if this angle were zero, and these vectors
are called linearly close by analogy with the situation encountered with

""linearly dependent' vectors.

These ideas can be extended in a K-dimensional case and are developed in
appendix B. Consider a space (Ex_; (fig. 8) spanned by the independent vec-
tors aY/aal, aY/eaz, . . ., dY/dak.y, and a Kth vector, d¥/day. The K
vectors BY/aal,ABY/BaZ,. . . a?/aaK_l, 8?/BaK are linearly close if the
angle between 23Y/dag and its projection on the space Eg.; is smaller than
some threshold e. It is also convenient to consider the distance between the
extremity of aY/aaK and the space Ey_;. If BY/aaK is normalized to unity,
this distance, s, is a measure of the ''separation' between aY/BaK and Eg_;.
The linear closeness condition is then expressed as

s < sg = sin(e) (8)

If the threshold s, is chosen equal to zero, equation (8) defines the
classical linear dependence. The choice of s, greater than zero expresses
the uncertainties that are due to real measurements and real computation, the
latter introducing in addition some errors in the direction of the vectors
oY¥/3aj, which justifies even more strongly the necessity of the linear
closeness concept.

In the set of the N vectors 3Y/da; there may be different linearly
close subsets that will be responsible for a nonunique solution in the identi-
fication. However, the nonuniqueness will affect only the parameters
involved in these subsets. Therefore, if it is possible to find these
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dependent (or almost dependent) sets, not only the cause of nonuniqueness is
found but also some cure. Indeed, by removing from the identification process
one parameter in each set (i.e., leaving these parameters with a constant
value) the degeneracy of the space Ej 1is removed and the identification may
continue with a smaller number of parameters for which there will be a unique
solution. Of course, this solution will depend upon the values given to the
discarded parameters, but, and this is a key point, if the true value of the
discarded parameter of a given dependent set is known from any other source of
information, and if this value is given to this parameter, then the values
obtained in the identification for the other parameters of this set are
correct. Moreover, even if nothing is known, some parameters might not be
involved at all in any dependent set, and for these independent parameters a
correct answer will be obtained, regardless of the situation for the others.
That is, if the dependent parameter is removed and the identification con-
tinued, the final value of all parameters that were not involved in the
dependent sets will be correct.

An ogvious point, which has also to be considered, is that, above all, a
vector 9Y/3a; has to be nonzero. If such a vector is zero, this means the
parameter aj has no effect on the model, at least for the particular input-
output set considered. Again one should realize that if 3Y/3%aj is small
enough,? aj will be considered an irrelevant parameter. Therefore the
irrelevance may be checked first, while computing the vectors 3Y/3aj.

The problem of irrelevance, which is the simplest case of nonuniqueness,
can be related to a linear closeness situation. For example, consider a prob-
lem with two parameters a; and a,. If 3Y/da, is found small enough, a, is
declared irrelevant. Let us define then a new set of parameters aj and aé
such that

a; = aé + ai
1
az = dz - a1
it follows that

Y )
aai CES] da,

Y af )
1]
8a2 aal 8a2

and the angular separation between these two vectors is

2The problem of defining a good criterion is delicate and it is difficult
to give definite rules. One possible approach is to compare the relative
change in the output to the relative change in the parameter. Also the pre-
cision with which the computations are performed has to be taken into account,
since the change in the last digit is not very significant.
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s < 2]8?/3a2|/la?/8a1| (9)

which is small when 28Y/d3a, is smal}. Therefore the irrelevance of a, is
equivalent to a closeness between a; and aé.

In conclusion, the analysis of the structure of the space Ey provides
an accurate way of detecting the occurrence of nonuniqueness and prevents this
occurrence from causing a complete loss since it indicates not only the
correctly identified parameters, but also what a priori knowledge is required
to complete the identification. How such an analysis can be performed on a
digital computer will be discussed next.

DEPENDENCE ANALYSIS

Two important steps that are required before considering the computer
program are discussed in this section. The first step is concerned with the
definition of the operations that must be performed and the mathematical prin-
ciples on which they are based. The second step establishes the actual method
of computing the numerical values corresponding to these operations. The
mathematical background used in the section "Principle'" below can be found in
appendixes B and C, while the detailed analysis of the computation technique
is given in appendix D. The program itself, which has been written in
FORTRAN IV, is explained and listed in appendix E with an example of output.

Since the dependence analysis involves the N vectors 3?/8&1, it is of
course supposed that the components of these vectors have been computed and
stored, either as a part of the identification process, or only for the pur-
pose of this analysis. The actual computation of these components will not be
discussed since the technique may differ considerably depending upon the model,
the type of problem and other practical considerations. However, it might be
convenient to look for the irrelevant parameters at the time of this computa-
tion (i.e., check the magnitude of 3Y/5a; with respect to some criterion).

In any case, a check for zero valued vectors is always made at the beginning
of the dependence analysis.

Principle

The set of the M-dimensional vectors 8?/3ai must be analyzed. Since
the linear closeness involves only angular properties, a set of normalized
vectors

Di = (8¥/8aj)/|8¥/saj| i=1,N (10)

may be used instead. At this stage the irrelevant parameters have already
been found and the corresponding vectors oY/3a, removed from the set, so
that N is the number of relevant parameters afid equation (10) is meaningful.
Call By the set of the N vectors 03Y/3aj. The problem is to find what are,
if any, the almost dependent subsets By in the set By (Bx C By, K = 1,N).

12



One possibile method is the following: since any subset that contains a
linearly close subset is itself linearly close (appendix B), one could first
look for all the possible two-dimensional sets, then for the three-dimensional,
and so on up to N-dimensional. Each time a subset is found linearly close,
one vector could be removed and the process could be continued with a smaller
number of vectors. This way would ensure that when a K-dimensional subset is
found dependent (or almost dependent), by removing one vector of the subset, a
K - 1 dimensional subset would be obtained that would contain only independent
vectors. Unfortunately, the time involved makes the straightforward applica-
tion of this method to a digital computer unfeasible since the computation of
2N determinants is required (which already takes one minute on the IBM 360/60
for 12 parameters and this figure is doubled for each parameter added).

Another important consideration is that when a vector has to be removed,
many choices are possible and some are better than others. We have seen
indeed that the nonuniqueness comes from the fact that the basis vectors
9Y/5aj constitute a skew basis. Conversely, the more nearly orthogonal the
basis, the less tendency to nonuniqueness. For example, if three vectors are
found in a plane (fig. 9), the best choice is to discard D, because it
leaves D; and D3, which are almost orthogonal, to construct a two-dimensional
basis. The worst choice is to discard Dj; which leaves a skew basis. There-
fore it is advantageous if the technique provides also a way to optimize the
basis. This can be done by constructing systematically an optimal basis with
the vectors Dj. To start the process a first vector is chosen. Call ny
the index of this vector (e.g., if D3 1s chosen, n; = 3); the parameter an,
corresponds to the first vector Dp;. Many ways, optimal or not, may be
devised to choose this vector, but generally it is a matter of common sense to
know which parameter at least should be kept in the model. The next step is
to find which of the N - 1 remaining vectors is the farthest from Dpn,. To
do that, the distances sj from the Dj to Dn; are computed (fig. 10). If
Sn, is the largest, then the corresponding vector Dp is chosen to con-
struct a two-dimensional subbasis with Dpn,. Also, the smallest value of the
si 1is searched and compared to the threshold sg. 1If it is larger than s,
the name of the corresponding parameter is kept in memory as well as the value
of sj. This defines a '"critical' parameter, in the sense that, if the thresh-
old was increased, it would have been considered dependent. Therefore the
knowledge of this critical value sj might give an indication of potential
difficulties. If s3 1is less than sy, the corresponding parameter is
declared dependent and Dj removed from the set of vectors. The same process
is now applied to find the third basis vector Dp,. That is, all the dis-
tances from the N - 2 remaining vectors to the plane (Dn;, Dp,) are computed,
and Dp corresponds to the largest distance. On the example of figure 10,
when the four-dimensional subbasis is being formed, the distance from Dj to
the three-dimensional subbasis (Dny» Dny Dns) is found to be less than sj,.
Therefore Dj 1is discarded as linearly close to this subbasis. To memorize
this event involving the parameter aj, a corresponding integer MN(j) is set
to 0 in the program. This integer, or '"dependency index,' will be used
internally by the computer to keep track of the dependent, independent or dis-
carded parameters. Then, by computing the projections of Dj on the subbasis,
Dj is found to be in the plane (Dn,, Dny). Therefore the actual almost depen-
dent set is (Dj, Dny» Dng)- This is memorized by setting MN(n,) and MN(nj3)
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equal to 1 (meaning that ap, and an, are dependent parameters) and by
storing j,n» and ny 1in a logical array (equivalent to the information, the
first dependent set contains the parameters aj, ay, and any). More details on
the program are given in appendix E.

The above process will continue until all the N vectors have been
either used in the basis or discarded. Since MN was set to 2 for all the
parameters to begin the analysis, if a vector has never been involved in any
dependent set, its dependency index will keep this value, so that a 2 will
indicate an independent parameter. Finally a union of the dependent sets may
be performed if they have a nonempty intersection. For instance if the depen-
dent sets (as, ay) and (ap, as, ag) are found, they may be combined in the set
(ap, as, ay, ag), and in this case if both ay and ag are discarded, the
final values found in the identification for a5 and a; will depend upon
those of ay and ag. It is essential to note at this point that if some
linearly close subsets have been found, the final basis will be composed of
only N' vectors (N' < N). This means that only N' parameters can be
uniquely identified. Hence N' - N parameters have to be removed from the
identification process (i.e., their value will not be changed). An optimal
choice 1s to remove those for which MN = 0, and this can be done automati-
cally in the program. Otherwise the user has to decide which parameter he
wants to remove in each dependent subset and reset his identification program
correspondingly. Therefore, although the removal of some vectors Dj is
required in the dependence analysis in order to find the dependent subsets, it
does not imply the removal of the corresponding parameters. That operation
belongs only to the application of the analysis.

Computation Technique

Once the irrelevant parameters have been eliminated, it is possible to
compute the normalized vectors Dj and start the construction of the optimal
basis. At each step of this construction, the projections of a vector on the
last subbasis must be computed. This still seems very strenuous, but we have
found that all these quantities can be obtained during the recursive computa-
tion of a single N x N determinant (which is quite an improvement compared
to 2N determinants needed in a straightforward method).

Consider indeed the matrix D whose N columns are the M-component
vectors Di and form the product

G = Db

where G 1is an N x N matrix, positive semidefinite, and the elements gij
are equal to the inner products DED..3 Because of the normalization, the
diagonal elements are 1's. The determinant of G 1is called the Gram deter-
minant of the vectors D;, Dy, . . ., DN, and is equal to the square of the

31t is also interesting to have a quick look at this matrix because if an
off-diagonal element gjj 1is equal or very close to 1, it indicates that Dj
and D; are very close (i.e., the parameters aj and aj are dependent). In
this case s is simply equal to (1 - gij)llz.
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volume of the N-dimensional hyperparallelepiped determined by these vectors
(ref. 9).

DET(G) = V§{

Computing this determinant is equivalent to computing a volume. Since
there is a recursive method of computing an N-dimensional volume which
involves the distances sji, a recursive method of computing the determinant
should exist that involves these quantities. If Vg is the volume corre-
sponding to a K-dimensional subbasis, the volume obtained by adding a unit
vector Dg41, at the distance sgk41 from the subbasis, is indeed

Vig+1 = VK X Sg+1

Squaring the two sides of this relation leads to the recursive relation for
the determinant. It is shown in appendix D that this can be obtained by
pivoting about the diagonal elements. At the Ktk step, the situation is as
represented in figure 11. By rows and columns exchange, and renormalization,
the K first rows (corresponding to the K basis vectors Dnj, Dny, . . -,
DnK) form an upper triangle with the diagonal elements equal to 1. The other
diagonal elements such as gj;, gjj, .- . . are, respectively, equal to the
square of the distance from Dj, D, . . . to the subbasis (Dp;, Dpy, - . -,
Dnkg). Indeed, it can be seen directly that the determinant corresponding to
this subbasis plus, say Di, is equal to the determinant corresponding to the
subbasis multiplied by gjj. Symbolically

DETk+1 = DETK x g;;

which is precisely the recursive relation discussed above. Therefore search-
ing the elements gji;, 8ji> + - - for the largest and the smallest will end

in the determination of the next basis vector and of the critical one. If for
instance g:. 1s found toc be less than 52, then it is a simple matter to
obtain the components of D3 on the subbasis to determine the members of the
dependent set (appendix D), because the system of equations to be solved is
already triangular. In the same way a few extra computations at the end of
the analysis gives the solution dA' of the equation

(0T D)da' = DT ER
from which the solution for equation (5) is simply obtained by

daj = -daj/|3%/3aj| (i = 1,N and MN(i) # 0)

Computer Output

During the computation of the Gram determinant the following information
was obtained:

1. Name and separation of the new basis parameter

2. Name and separation of the critical parameter
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3. Names of the parameters found in a dependent set

4. Name and separation of the parameter optimally discarded from this
set

5. Also correlation coefficients between this parameter and the other
parameters of the dependent set (see appendix A)

6. Values of the dependency index (0, 1, or 2) for each parameter
7. United sets and name of the optimally discarded parameters

These are the type of items an engineer may want and this is what we have
displayed in our program (appendix E).

Certainly, there are as many ways to use this subroutine as there are
users, but some hints may still be indicated in this discussion. Two kinds of
corrective action can be undertaken following this analysis. One 1is entirely
automatic and controlled by the zeroes of the dependency index that are used as
a signal for the computer to bypass any computation related to the correspond-
ing parameter. This is compulsory if a matrix inversion is used in the iden-
tification algorithm. It will speed up the computation in other cases. The
second kind of action is a human decision based on the information obtained
and a general insight of the particular problem. Consider for instance the
list of the basic parameters. It will in fact contain all the parameters if
the subroutine is called with a threshold equal to 0.0. Because of the opti-
mization procedure, the parameters are sorted by increasing degree of depen-
dence. Since the separation is also a measure of the confidence in the
parameter estimate (appendix B), this list expresses the intrinsic properties
of the identification independently of any statistical property of the noise.
Consider now the choice of the discarded parameter when a threshold is speci-
fied. What is indicated by the computer is only an optimal choice, which will
give the best results in the identification of the remaining parameters. In
the example in appendix E, ag and a;, were discarded in the first dependent
subset. If the value of these parameters could be obtained from other measure-
ments, the identification could be run again with these values. However, the
engineer may find that known values are available only for ag and aj3, in
which case he will decide to identify ag, aj;, and ajy. This kind of trade-
off is typical of real problems and cannot be ignored. It requires more skill
than brute logic; therefore it cannot always be mechanized automatically on

the computer.

APPLICATION TO THE IDENTIFICATION OF A SATELLITE SIMULATOR

Data Acquisition System
The Ames Research Center three-degrees-of-freedom satellite simulator is

an air-bearing supported platform provided with a system of servo-gimbals and
mercury connectors allowing accurate measurements of the attitude angles and a
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torque-free link with the outside (ref. 10). This particular air-bearing
configuration allows about #20° amplitude in roll and pitch and there is no
limit in yaw.

On figure 12 is sketched the general configuration of the whole system
for data acquisition and processing used for the identification of the plat-
form. The attitude rates (p, q, and r) are sensed by three rate gyros whose
analog outputs are digitized, after filtering, and recorded on magnetic tape
by an E.A.I. 8400 computer. This tape has to be converted to an IBM com-
patible tape from which data cards can be punched. These cards contain there-
fore the dynamic data (i.e., the discrete time histories of the three rates).
The initial attitude angles of the platform (Euler angles) are read on the
gimbal readout display and the corresponding values punched manually on cards
(static data). The identification is run on an IBM 360 digital computer which
receives the identification program. A special set of control cards is used
to specify the different operations performed by the identification program.

Equations of Motion

The nonlinear equations used to describe the system in the case of large
angular motion may be written:

g = S(wg (11)
h =S(wh+T (12)
Jx Jxy Jxz
w = Jth J = Jxy Jy Jyz (13)

Jxz Jyz Jz

where w 1is the angular velocity of the platform (of components p, q, and r),
S(w) is a matrix expression for the crossproduct:

0 T -q
Sw) ={-r 0 p (S(w)g = g *x w)
q -p 0

g 1is the gravity acceleration vector, h the angular momentum, J the inertia
tensor of the platform and T represents the applied torque.

These equations have been developed in reference 11 for attitude control
analysis. They are written here in body coordinates with the origin at the
center of the bearing. The first equaticn is purely kinematic, as it
expresses the change in the coordinate systems (in its general form it
involves the whole attitude matrix, but in this particular problem, where no
control in yaw angle was considered, the direction of the vertical only was
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required), the second equation is a torque equation, and the last one is just
the classical definition of the angular momentum.

In normal operation (i.e., for satellite simulation purpose) the platform
is completely balanced, that is, the center of gravity coincides with the
bearing center. In our experiments the center of gravity was offset deliber-
ately to make the system pendulus. If M is the total mass and b/M the
bearing offset (three components vector), the torque exerted by the gravity is:

Tg = -S(b)g (14)

The natural damping of the system, mainly due to aerodynamic effects, was
quite small and in some tests it was convenient to use the reaction wheels as
dampers. The three axes were damped separately; the corresponding control
system is shown on figure 13 for one axis. Considering one axis, we use the
classical linear model for the DC motor,

E = RI + Kg® (15)

where E 1is the applied voltage, I the current in the motor, R the resis-
tance of the wiring Kp a back electromotive force constant, and Q the
angular velocity of the shaft (which is also that of the wheel). The torque
available is proportional to the current and satisfies

Ty = KpI = Jy2 + Kp® (16)

where Jy 1is the inertia of the rotor-wheel system and Kp a damping con-
stant. When the wheel is used as damper, the applied voltage E is con-
trolled by the platform rate, say the roll rate p:

E=Cip (17}

where C; 1is a control gain. Eliminating E and I from equations (15),
(16), and (17) and calling hy; the angular momentum of the roll wheel
(hyr1 = JwQ), we obtain finally an equation of the type

hy; = C1p - athyy (18)
where o; 1s a constant.

Considering now the total angular momentum hy of the wheels (of com-
ponents hyy, hwo, hws), the control equation may be written as

hy = Cu - ahy (19)

where C and o are diagonal matrices corresponding, respectively, to control
gains and back electromotive force plus damping factors. The main nonlinear-
ities were introduced by the torque and speed limiters. They enter the
preceding equation as limits in the values of the components of Cw and hy,
respectively.
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Finally the torque exerted by the wheels on the platform can be expressed
as
Ty = S{why - hy (20)

and the complete system is modeled by letting the torque T
be

in equation (12)

T =Ty + Tg (21)

When the wheels are not used, Ty 1is replaced by a linear term in w to model

the natural damping, that is DMPw, where DMP is a diagonal matrix.

In all cases, the "output'" of the system was obtained by the three rates

P, g, and r seen through the first-order filters and the digitizer (fig. 12).
Thus three equations have to be added to model the system completely:

T&l = klp - yl

1y, = kaq - ¥, (22)

1}

Tys k3T - y,
The DC gains of the filters (k) were obtained by independent calibration
of the gyros and computer links, and the time constant t was known from the

setting of the analog filters.

Finally the complete sets of equations corresponding to the free pendulus
(natural damping) case, and the reaction-wheel-damped case may be written:

Case A: natural damping
-1

p JIx Ixy  Ixz hy

ql| = JXY Jy JYZ h2

r JXZ JYZ JZ h3

g1 0 r -q 0 0 0 g1
g2 -r 0 P 0 0 0 go
g3 q -p 0 0 0 0 g3

= + ajs3

hl 0 —bz by —DMPX —h3 h2 p
ho b, 0 -bx hg —DMPy -hy q
hj —by by 0 -ho hy -DMP T
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with the equations of the filters:

™Y,

Tys

kip - ¥,

T&z = koq - Yo

k3r - Y3

The parameter aj;3 appearing in the last torque equation was needed to
describe a constant torque in yaw experienced during the tests (because of
some drift of the system not corrected at this time).

Case B: reaction-wheel-damped case

-1

i FJX Ixy  Ixz hy
al=]Ixy Iy yz
] UJx, Jyz J, h3
r—' ) -
g1 0 T -q 0
g2 -T 0 P 0
g3 qQ -p 0 0
h, 0 -b, by -Cy
hsy b, 0 -bx hj
hj —by by 0 -hy
Fth Cl 0 0 P aj
hw2 =10 C2 0 ql - 0
h 0 0 Callrx 0
W] | 3 L

with the limiting conditions:
(motor torque) IClpl < ayg,

(wheels spin) Ithl < agg,

20

hj

0 0—1 (él
0 0 g2
0 0 g3
-hg  hyl |p
-C2  -hi| |q
h; -C3| |r
T

—

Icqu < arz,

IhW2I < a3,

q P

Tyl

Tyz =

Ty, =

|Car| < aig

|yl < 2z

=kip - vy,

kpq -y,

kar - y,

+ ais



Parameter Identification Problems

An analysis of the equations can show that, in case A or B, there is not
a unique solution for all unknown parameters. One parameter has to be known;
hence the lateral offset by, was measured independently because it was easy
to obtain by adding a small weight on the side of the platform, at a known
distance from the bearing. For case A, 12 unknown parameters remain to be
identified: the 6 inertias and products (Jx, Jy, Jz, Jxy, Jxz, Jyz), the
2 center-of-gravity offsets (b,, b,), the 3 damping terms (DMPy, DMPy, DMP ;)
and the turbine torque aj. {n case B, 21 parameters are to be identified:
9 of the parameters as in case A (all except DMPy, DMPy, DMP;) plus the 3 con-
trol gains C;, Cp, and C3, the 3 back electromotive force and motor damping
terms o3, ap, o3, the 3 limits in motor torque a;g, aj7, ajg, and the 3
limits in wheel momentum as,, asz, asy.

Experimental Results
In the two cases, the platform was first held in some position by an

electromechanical device, and the attitude angles (pitch 6 and roll ¢O)
measured. The initial conditions therefore were

(o}

-sin(064)

o
—
1]

cos (05)sin(¢4) P=9q=1=0

te]
N
|

g4 = cos (8p)cos (¢5)

Because of the gravity restoring torque, once the platform was released
an oscillatory motion was observed about the three axes, and the corresponding
discrete time histories of p, q, and r were recorded. About 200 points were
used in each, covering 5 or 6 periods, thus the vector Y had about 600
components.

When the motion of a body is excited about one axis only, it only depends
upon the inertia about this axis and no information is available concerning
the other inertias. This has actually been the current method to determine
the inertias of aircraft where great care is taken to obtain single-axis exci-
tations. In the case of the platform, it is intuitive that motions about the
three axes should be excited to obtain a good identification of the inertias
and products. Therefore some difficulties may be expected because the yaw
motion is poorly excited by the gravity restoring torque. This motion depends
of course on the lateral center-of-gravity offset and the initial conditions,
but both are limited by the angular limitations of the platform, and in our
tests the yaw rate was at most 0.1 or 0.2 of the roll or pitch rate.

Case A- These data were taken in the free-oscillation case (no reaction
wheels damping), with the initial conditions:

P> 9, and v = 0
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pitch angle = -8.44°

10.44°

roll angle

Lateral bearing offset on the Xx axis: by = 0.211 ft-1b. The first identi-
fication was run with a threshold set at s, = 0. All 12 parameters were
identified and a very good fit in the time histories was obtained after a few
iterations. This fit was measured by a quantity denoted as "COST" which was
simply the sum of the square of the errors, that-is |ER|2. The decimal loga-
rithm of this quantity is plotted on figure 14 as is the evolution of the
values for the six elements of the inertia tensor. Although the behavior of
the parameters is somewhat erratic at the beginning, they finally reach an
asymptotic value for which the cost remains essentially constant. Therefore
one might have been satisfied with these results and considered that these
final values of the parameters were correct. The dependence analysis, however,
indicated a low value for the separation of the parameter (Jy,). Consequently,
the identification was run again, with the same initial values for the param-
eters, but with a threshold set at s, = 0.02. As it appears on figure 14,

the evolution of the parameter values is quite different in this run. Indeed,
Jxz was discarded at the second and following iterations because of its depen-
dence on Jyx, Jz, and aj3. The diagnostic issued by the computer when the
final values were obtained is given in appendix E. The important fact to note
here is that these final values are different from those obtained before, yet
the match in the time histories is as good. To illustrate this similar match,
a plot of computed and measured time histories of the roll rate is shown on
figure 15 for these two identification runs.

The final numerical results obtained in these two runs are given in
table 1. These results deserve some comments and explanations. The "error
bounds' were computed according to equation (B8):

2
€0

(dag)? = "y
sKlaY/BaK|

where the measurement error e, was estimated from the residual error between
model and plant output when the best match was obtained. Note that the values
of the independent parameters (dependency index = 2), although different in
each run, are within the predicted error. The dependent parameters, however,
(dependency index = 1) exhibit large variations as a result of the nonunique-
ness. Another quantity given in these tables is the semsitivity. It is a
measure of the model response to parameter change and it is defined by

~

ai

Sensitivity to the parameter aj = —
Y|

A sensitivity of 1 corresponds to a direct proportionality between the corre-
sponding parameter and the output. If the sensitivity is very small with
respect to 1 it indicates that the output is almost independent of the param-
eter, and large errors may be expected in the estimation of this parameter.
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Therefore this quantity can be used as a criterion for deciding whether a
parameter is irrelevant. Sensitivity and error bounds are not a part of the
dependence analysis but are computed independently in the identification
program.

Finally, a partial check of these identifications was made. The value of
bz, vertical offset of the center of gravity, was determined independently by
a static test of the platform, and found equal to 0.78 ft-1b, which agrees
well with the results of the two identification runs.

Case B- To test the algorithm in a strongly nonlinear case, another
identification was performed with reaction wheel damping. It provided an
interesting illustration of the problems encountered and how they were
detected by the algorithm.

The initial conditions for this case were:

P, 9, and r = 0
pitch angle = -0.65°
roll angle = 12.98°
Lateral bearing offset on the x axis:
by = 0.134 ft-1b
threshold = 0.01

On figure 16 are shown the computed and measured time histories of the roll
rate. (The wheel spin is also plotted exhibiting sharp saturation effects.)
A residual systematic (not random) error is observed here that must be attri-
buted to a modeling error. Indeed, many assumptions were made in modeling the
control system, mainly concerning the linearity of the DC motors and the
absence of friction in the wheel bearings. However, considering the approxi-
mations made, the agreement is quite satisfactory. The final results of the
identification are given in table 2. The parameters aj;g and ap, were found
to be irrelevant. The latter represents the limit of the yaw wheel momentum,
corresponding to the spin limitation of the yaw wheel. 1Indeed, the yaw wheel
momentum time history showed that it never exceeded its limit; therefore it
was not possible for the computer to determine this limit. For a similar
reason, the limit in torque aj;g could not be determined. (Note that the
sensitivity of these two parameters was found equal to zero.)

CONCLUDING REMARKS

A method has been described that determines which parameters of a system
model can be uniquely identified from a given set of measurements. It applies
to nonlinear systems and does not require any special form for the model,
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providing that the model is completely defined and depends upon a finite
number of parameters. The basis of this method is that all the necessary
information is contained in the derivatives of the error vector with respect
to the parameters. These derivatives are vectors in an M-dimensional space
defined by the measurements (their components are often called "sensitivity
functions" or "influence functions'). The nonuniqueness has been shown to be
the result of linear dependence between these vectors in the ideal case of
perfect measurements and exact computation. The concept of '"linear closeness'
has been introduced to take into account the uncertainties introduced by the
errors occurring in the measurements and in the computation, thus allowing a
realistic analysis of practical problems.

To perform this analysis, an algorithm has been developed for digital
computation that can easily be integrated in a complete identification proce-
dure. This is done practically at no extra cost in computation time if the
procedure already requires the computation of the sensitivity functions (as in
multiple linear regression or in quasilinearization for instance).

The detailed comments put out by the computer not only point out where
the identification has, or is going to fail, but also indicate what could be
done to remove the nonuniqueness. A very useful feature of this algorithm is
its ability to obtain the correct values of some parameters (independent param-
eters) despite the fact that the complete solution might not have been unique.

Successful results obtained in the identification of a three-degrees-of-
freedom satellite simulator indicate that the air-bearing technique might be
applied to the determination of the inertia tensor of an actual aircraft. The
identification of a highly nonlinear control system implemented in the simula-
tor has also proven the effectiveness of the algorithm in such cases.

It must be noted finally that beyond the strict application of this
technique to identification, there are interesting potentialities in other
fields, in modeling for instance. Indeed, the algorithm indicates how the
model could be simplified since the most dependent parameters can be elimi-
nated by raising the value of the threshold. As the threshold is raised more
and more, the model becomes more and more simple, although less and less accu-
rate. Another possible use is the practical tailoring of the input to obtain
optimal results in the identification. In this case, one could maximize the
separation of a given parameter, or some average upon a group of parameters,
by adjusting the parameters defining the input sequence.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 94035, May 14, 1971
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APPENDIX A
LINEAR DEPENDENCE AND FUNCTIONAL RELATIONSHIPS

The linear dependence between the K (M-component) vectors a?/aal,

~

Y/da,, . . ., BY/BaK may be expressed by
oY Y
dag ZE: M da; (AL
i=1

where the Aj are some nonzero functions of the parameters a;, and the K -1
vectors 3Y/da; are supposed independent. When aj; are varying, Y 1is con-
strained to stay on a K - 1 dimensional hypersurface. It is generally
possible to find a system of coordinates (z;, 23, . . ., zg_;) on this surface
so that Y may be expressed as a function Z of the coordinates z:

?(al’ Ao, « ¢ ey aK) = Z(Zl, 22y o o ey ZK-I) (AZ)

Therefore Y s not really a function of the K parameters but depends
upon K - 1 functions of them. If the partials of both sides of equa-
tion (A2) are taken with respect to a and compared to equation (Al), it can
be shown that the functions =z satisfy the system of equations:

K-1

azj sz .
Fa—K=E Xi—a—a—{ _']=1,K—1 (A3)

Given the values of a, the values of =z are well defined. The converse is
not true, but if a is known, then there must be a one-to-one correspon-
dence between z and the first K - 1 parameters, since Y is now a func-
tion of these K - 1 parameters only. The necessary and sufficient condition
on the functions =z is that their Jacobian with respect to the K -1 a is
not zero; that is,

3(;1, Zos + « o5 ZK-1)
3(ar, az, - .« -, ag-;)

£ 0 (A4)

We now examine the case where the vectors 8?/Bai are only linearly
close (see appendix B for definitions). Equation (Al) becomes

KA1
3Y z : 5Y
—_— = Ay ——— € (AS
aK - 1 aai K )
1=1
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where ¢, 1is a (M-component) vector orthogonal to the space Eg_; spanned by
the K -1 vectors 9%/8aj and of small magnitude. In this case Y depends
also upon ax and may be written as

Y(al, 32, o e ey aK) = Z(Zl, 29 + « oy ZK-1> aK)

if zi are chosen in such a way that they verify equation (A3), then using
equations (A3) and (A5) one obtains

~— = EK (A6)
The change in Y when ag is changed while zj are kept constant is thus
dY = dz = egday

For a small enough e, df will be negligible and, because of equation (A6),
the property equation (A2) will be verified.

Let us now evaluate the total change in Y for arbitrary da,

- ZE: )4 , oY
dy = : <'é'a—1-> daj + <——33K> daK
1

Eliminating B?/aaK with equation (A5) it follows that

K-1
ay = E (daj + AidaK)<§§7> + egday (A7)
1
i=1

If eg 1is small enough, then for a given change da, there exist da. such
that dY stays close to zero. From equation (A7) we see that the values of
such daj are given by

dai = -KidaK (A8)

Therefore if a value was given to ay with an error dayg, the corre-
sponding errors in the values of the a; obtained in the identification are
given by equation (A8). Consequently, it is very useful to compute the quan-
tities Aj. In the algorithm (see appendix D) a normalized set of vectors is

used:
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Dj

and the quantities 1w,

equation (Al) into

(a?/aaj)
|0Y/3a; |

are computed.

The uj are defined by transforming

They are the components of Dg wupon the vectors Dj and are related to

by

uj 0¥/ 0a|

l B?/Bail

Ai
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APPENDIX B
DEFINITION AND PROPERTIES OF LINEAR CLOSENESS

Consider a set By of K unit vectors (D1, Dy, . . ., Dg) spanning a
space Eg. The first K - 1 vectors span a space Eg_;. Let ey (egx € Eg)

be a unit vector orthogonal to Eg.;. Then Dy may be decomposed as

K-1

D = sgex + 522 ”iDi (B1)

The wuj are the components of Dy on the Dj in the basis (eg, Dy, D,p,

.» Dg-1) and sy 1is a positive scalar (this can always be done by a
proper choice of eg) equal to the sine of the angle between Dg and its
projection on Eg_;. When sk 1is zero, equation (Bl) defines a strict linear
dependence between the vectors D. If sy 1is arbitrarily small, these vec-
tors become almost dependent and sy 1is a measure of their degree of depen-
dence or of the separation between Dy and the space Eg-i. We may therefore
define the linear closeness as:

The vectors of a given set By are linearly close with respect to
the threshold so tff there exists a vector Dg of the set such
that its separation sy from the others is less than or equal to

Spo-

We may write this symbolically: Byg is LC/sqy 2ff 9 Dy € Bx such that

What has been defined is obviously an angular property, therefore it
will not change if each vector D 1s multiplied by a different scalar. For
any set of vectors, it is possible to define a corresponding set of normal-
ized vectors, By, and <ff By is LC the original set is also LC. For
convenience and ease in the proofs, we always work with the normalized set.

Consider a set By where Dx is given by equation (B1). Introduce
another vector, say Dgs+1, to construct a new set Bgy; (Bgs; =By U Dgse1).

Then Dk may be written

K-1

— ! !
Dg = 5K+1eK+1+5;a w.Di + up Dy (B2)

where egs; 1s a unit vector orthogonal to Dj and Dg,;, and ui are some
scalars. Recalling that
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eEeK =1 eEDi =0
T _ T o .
eK+1eK+1 =1 eK+1D1 =0 i=1, K -1
T -
k+1Pk+1 = O

one obtains from equation (B2)

T Dy =
€k+1°K T Sk+1

and from equation (Bl)

T _ T
ex+1PK = skleg,;ex)
therefore
T
SK+1 = (eKeK+1)sK
(eTe ) is positive (because sy and s are positive) and less or equal to
KK+1 P K K+1 P 4

1 (because equal to cos(6), where 6 1is the angle between the two vectors
e), thus we obtain the important inequality

SK+1 <SK (BS)

Property I- This result shows that the increase in dimensionality
always <ncreases the dependence (unless the new vector added is
orthogonal to the others in which case nothing is changed), which
means that when the number of parameters is increased there is
more chance for a nonunique solution.

Now suppose that a set By 1is given in which the subset By (Bg & Bn)
is LC. From the definition

SK S sg
Starting from By, add the vector DK+1 to construct the set Bg,; C By.
Because of equation (B3)
Sk+1 S So

therefore Byg,; 1is also LC. Continuing to add vectors this way, we see
that ultimately sy < s, and we have

Property 2- If a set includes a LC subset, it is itself LC, and
its separation is less than or equal to that of the subset.
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To summarize the preceding results, let us introduce this notation: if
B is a set of vectors spanning some space E, and D a vector not belonging
to the set B (but belonging eventually to the space E), the separation s
between D and B is written as

s = S(D/B)

(As has been seen, 0 <s < 1.)

Definition of the Linear Closeness
B is LC/sg 2ff 9 D € B such that S(D/B') < s,, where B = B' UD.
Properties-
LC 1:
S(D/B UD') <S(D/B) ¥B,D and D'
LC 2: 1f B' CB and B' is LC/s,, then B is LC/sy with sl <s,.
LC 3:

S(D;1/B YDy) S(Dy/B)

S(D,/B UD;) S(D2/B)
The proof of this last property is very simple; consider the volume of
the hyperparallelepiped constructed with the set B UD; UDj:

V(B UD; UDy) = V(BUD;) x S(Dp/BUD;) = V(B UD,) x S(D1/B U Dy)
In the same way
V(B UDj) = V(B) x S(D;/B) and V(B UD,) = V(B) x S(Dy/B)
which leads to LC 3 by substitution.

Relationship Between Separation and Error in Parameter Estimates

Let sk be the separation between Dy and the set Bg.;. We have as
in equation (B1)
K-1
i=1
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When there is some ''moise'" in the measurement vector Y, not only Y
lies outside of the subspace E,, but also its projection Y, on this sub-
space is shifted by some amount &Y, from its value in the absence of noise.
As a matter of fact, because the identification procedure tends to make the
computed vector ¥ reach the target Yoy, the component of the noise orthog-
onal to Eg does not affect the result, whereas the component in Eg, 8Yp, is
directly responsible for the error in the parameter estimates. This uncer-
tainty &Y, may result from random perturbations of the system, or instrument
errors, quantization errors, nonlinearities or other unknowns, but we may
assume that some bound is known for &Yy, for instance,

2
sYL - sY, < e2 (B5)

A

Therefore a set of parameter values that causes Y to satisfy
¢Tay = (Y T . ¥ < &2
dyldy = (Y - Yo) (Y - Y)) Seg (B6)

is as good (or as bad) as any since Yo 1is not known exactly. If the param-
eters are changed by the amounts daj, dap, . . ., dag, the corresponding
change in Y may be written as

- ZE: Y | . oY
dY = da; Dj daj + 55; Dy dag
i=1
using equation (B4) leads to
K-1 R R
5 oY Y Y
dY = E ( 55;- daj + 18] 55; daK> D + Sk 55; daK ey (B7)
i=1
or
a¥ = v + (s éi—- da, ] e (where V € E and e, 1 V)
- K |2ag| ""K/ K K-1 K
finally
ST . S 2 2 3? 2
dy dY = [v[® + s} say (day)

Comparing with equation (B6) gives us an upper bound for dap, the error in

a
K 2
@ag)? < ———— (B8)
sK|3Y/3aK|
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When ag is not coupled with the other parameters (i.e., when Dg
orthogonal to Eg_.j), sk 1is equal to 1. Thus the quantity e /IBY/BaKI
may be interpreted as an ''uncoupled error.' The effect of the closeness is to
increase the error in the parameter estimate as appears clearly in relation

(B8).

It is interesting to compare expression {(B8) to the classical least
squares result for the variance of the parameters (ref. 2), obtained also in
quasi-linearization methods (ref. 12):

E(6a%) = (DERTDER)iiE(SYz) (B9)

(DERTDER)kk is the kth diagonal element of the matrlx (DERTDER) ! and it

can be shown easily that it is just equal to 1/(s IBY/SaKI . But, whereas

(B7) supposes a white ergodic process for &Y, our result assumes only the
existence of some kind of bound on the measurement error.
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APPENDIX C
DEFINITION AND PROPERTIES OF THE OPTIMAL BASIS

Given a set of vectors belonging to a K-dimensional space Eg, K
vectors of this set D, Dy, . . ., Dgx are said to form an optimal basis in
Ex with respect to the threshold s, if they have the following properties:

For any i (i from 1 to K- 1) and any j (i + 1 <j <K):

0B1 S(D§/Bi) > s
0B2 S(D;4,/Bi) = S(Di/B;)

where Bj 1is defined by

Bi = Dl U D2 U D3 N Di

Given a set of N vectors (D, Dy, . . ., Dy) and a threshold s, it
is possible to construct an optimal basis using the recursive process:

(a) To start the process, an arbitrary vector, Dj, is chosen from the
set.

(b) The following steps are then taken:
Step 1 Bl = Dl
D, is the vector of the set such that S(D,/B;)=S(Di/B;)

Vi £ 1,2

Step J By = Bj—l U Dj
Dj+1 is the vector of the set such that S(Dj+1/Bj)2>S(Di/Bj)

Yifgl, 2, ..., 5+1

(c) At each step j, Di is discarded from the set if S(Dj/Bj) < sg-

It is clear that (c) leads to the property OBl and (b) to OB2. Since
some vectors might have been discarded, K 1is less than or equal to N.
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We shall now derive some properties of the optimal basis from its
definition and the properties of the linear closeness shown in appendix B.

OB3- In an optimal basis, the vectors are sorted by decreasing values of their
separation from the preceding subbasis:

S(Di+1/Bi) < S(Di/Bj-1)

Proof:
S(Dj+1/Bi) = S(Di+1/Bi-1 Y Dj) < S(Dj+1/Bi ) (from LC1)
and
S(Dj4+1/Bi-1) < S(Di/Bj_;) (from OB2)

0OB4- In any subbasis Bj

. . > . /B.

S(Dj-1/B;_, Y Dj) > S(Dj/Bj_;)

Proof: From LC3 and S(Di/Bj_2 U Dj-l) = S(Di/Bj_1)

S(D5_1/B;_,)

S(Dj_1/Bj-2 Y Dj) = S(0j/B;_;) *

The result follows because the fraction is larger than 1 because of 0B2.
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APPENDIX D
COMPUTATION TECHNIQUE USED IN THE DEPENDENCE ANALYSIS

This appendix describes the elementary operations performed by the
computer when executing the dependence analysis program whose FORTRAN IV
version is given in appendix E.

Given the N (M-components) vectors a?/aai, first the normalized vectors
are computed
Di = (3Y/3a3)/|a¥/3a4|
Then the elements gij of the Gram matrix G corresponding to the N
vectors Dj are computed

T

(A1l the diagonal elements are unity and the determinant of this matrix is
DET(G).) Consider now the operations:

1. Define the quantity

DET; = g,, = 1

Multiply row 1 of the determinant successively by the elements of
column 1 and subtract from the corresponding rows to obtain zeroes in column 1.
The Gram determinant becomes:

128, 813 - - - &y
1 1 !
0 8, 823 goN
O [] 1 T
DET(G) = 83, 833 g3N
O 1 1 1]
N2 BNs ENN
with
]
ij = gij gilglj i,j = 2,N
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Now divide row 2 by géz which is classically called the 'pivot." Call

it p,.
2. Define

DET, = p, x DET] = g,,

The determinant is now

1 g, 813 - - &y
11 1"

0 1 83 * -+ 8oy
0 1 t 1

DET(G) = p, X 832 833+ -+ - 83y
0 1] 1 1

Eno N3 ENN

1t 1 .«
gzj - ng/pz (J - S,N)

Now obtain zeroes below the diagonal element in column 2.
are

" ' N L.
glJ = glJ - gingj i,j = 3,N
The new pivot is now p, = g;g. Row 3 is then divided by p,.

3. Define

DET3 = py X DET»
After K steps like those just described, one has:
DETK = PK X DETK—]. = pK X PK-1 ¢+ - - P3 X Po x 1

and the determinant is

36
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1 X X X x| )
0 1 X X X
L K Tows
DET(G) =1xp, xpy - - - xp,_, Xpx [0 0O 1 ox .. .x|)
0 0 X X X
0 0 X X X

where x 1s used just to indicate the location of nonzero elements.

Obviously, if there were only K rows and K columns (corresponding to
K vectors Dj), DET(G) would just equal DETyg. Therefore DET; in general
is the value of the Gram determinant of the first i vectors. Since the Gram
determinant 1s equal to the square of the volume constructed with the vectors,
we may write

1

2
DETg = V(Bg)? = V(Bg_1)“ x S(Dg/Bg_1)2

DETg_; = V(Bg_;)?

Compared with equation (D1)
py = S(Dx/Bg-1)?

This shows that the pivotal element is precisely the square of the
separation of Dg from the preceding subbasis By ;.

The construction of an optimal basis requires that, at each step, the
largest diagonal element be chosen as pivot. In general the sequence of vec-
tors will not be 1, 2, 3, . . ., N as described before, but it is always
possible at each step, to exchange rows and columns to build up the triangular
form. In practice, however, such dn exchange is time consuming and will not
really be performed by the computer. It is replaced with advantage by a
bypassing process. Indeed, once a diagonal element has been chosen as pivot,
say pj, and the corresponding row normalized, row and column i will not be
changed any more. To memorize this fact that the elements of row and column
i must not be modified, a logical variable associated to the index 1 1is set.
The general formula, by which the new value of the elements g.. 1is obtained,
may be expressed in the general form 1]

@5 new = (gij)old " 8 next * Enext j
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where '"next'" is the index of the pivotal element. Each time this formula is
to be applied, the indices i and j are checked and this computation is by-
passed if row i or j has been already normalized. Also, when the next
pivotal element is searched, all the pivot values are examined from 1 to N
except those already used since the same pivotal row cannot be used twice.

In the same way, whenever a row, of index i say, is discarded
(corresponding to the parameter aj), it is memorized and all computations
involving this index are bypassed. This is also done, right from the beginning,
for the irrelevant or unused parameters.

As we have seen previously, if a diagonal element, say gxg» is found
smaller than the square of the threshold so, the corresponding vector Dg
has to be discarded; that is, row and column K are not considered any more
in the computation process. In this case a special procedure is started to
determine the subset of Bg-1 to which Dy 1is linearly close. This is done
by computing the components uij of Dk wupon the K - 1 vectors belonging to
Bk_1. The following equation has to be solved for the uj:

2oniby =Dk  i=1,K-1
Multiplying both sides by Dg gives the equivalent system:
z:iuigji = ng iand j =1, K-1

It can be shown that an equivalent system is obtained by transforming g;
with the same rules used to reduce the determinant. Since the gjs 1]

at the step K, form an upper triangle, it is then a simple matter of backward
elimination to obtain the unknown yuj.

In the same way, the solution of any system of the form

Zigij dai = c; (i and j = 1, N and MN(i), MN(j) # 0)

where the da. are the unknowns and c¢; are given quantities, can be solved
be incorporating the c¢j as an extra column to the Gram matrix and performing
the corresponding transformations. In this case, however, the pivot will
never be chosen in this extra column, and the backward elimination is per-
formed once the Gram determinant is completely transformed in its triangular
form. If c¢; are precisely chosen as the components of the vector DT ER,
the da are the components of the vector dA' solution of the matrix

equatlon

(0T D)dA' = DT ER
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It is then easy to obtain the solution dA of equation (5),
(DERT DER)dA = -DERT ER
which is simply

da

~da;/|o¥/3a4 | (i = 1,N and MN(i) # 0)

H
(e

daj if MN(i) = 0
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APPENDIX E
A FORTRAN IV PROGRAM FOR THE DEPENDENCE ANALYSIS

This program has been written as a subroutine activated by the statement

CALL COR(N1, N3, THR, MODE)

N1 number of parameters of the model 1 S N1 <36
N3 total number of output measurements 1 < N3 < 2400
THR value of the threshold 0 <THR S 1

MODE integer controlling the output; may take values from O to 6 (0 prints
nothing, 6 prints out the full information, between O and 6 partial
results are given). If 10 is added (i.e., from 10 to 16) the inversion
of the Gram matrix is also performed.

The other variables needed as input or output for this subroutine are
passed via labeled COMMON's which are used throughout the whole identification

program.
Input Variables
MNS controls the parameters to be actually used in the identification:
MNS(I) = 0 if the user does not wish to identify the parameter aj.
MNS(N1 + 1) determines the first vector to start the analysis. If set
equal to 0, the subroutine will choose the first vector.
DER contains the vectors 9Y/3a (DER(j,1i) = a?j/aai)

ER contains the error vector (ER(j) = ?j - Yj)

MN is used as input, only to indicate the irrelevance of a parameter
(MN(i) = 0) if this has been found during the computation of the DER's

Output Variables (Returned to the Calling Program)

C contains the elements of the normalized Gram matrix,optionally will
contain the elements of the inverse if MODE = 10

PIV contains the values of the pivots
AD contains the norms of the vectors a?/aa

DDA solution vector of the equation (DER! DER)DDA = DERT ER
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magic number used to control the identification (dependency index):
MN(i) = 0 means aj is dependent (or irrelevant) and will not be
identified

MN(i) = 1 means aj 1is dependent but will be identified

MN(i) = 2 means aj 1is independent and will be identified

Output Variables Used in the Print-Out Only

These variables are not returned to the calling program but are printed
out at different steps of the computation. Therefore some may have different
meanings in different parts of the program. The meanings given below corre-
spond to those they have in WRITE statements, in the order they appear in the

program.

NEXT
SAVE

I0UT

SMIN
SEPAR

G(K,K)

NSETC

DET

TIME

WR

CLEAR

IBASIS

index of the next basic vector found to build the optimal basis
separation of this vector from the preceding subbasis

index of the critical vector (also, a fortiori, index of a discarded
one)

separation of the critical vector
separation of a discarded vector in a dependent set

error in the dependent parameter ayx corresponding to a unit error
in the discarded parameter of the dependent set

index of a dependent set after union has been performed

value of the determinant of the normalized Gram matrix after removal
of discarded vectors

value of the computation time
array used to write the names of parameters involved in different
comments issued by the subroutine and is obtained as output of the
auxiliary subroutine TRADUC

Auxiliary Variables
contains the elements of the normalized Gram matrix during the
successive transformations into an upper triangle; G 1is identical to

C at the beginning

logical array: CLEAR(i) =.TRUE. if the vector D;j has already been
used in the optimal basis (or discarded)

IBASIS(i) is the index of the ith vector of the basis
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KG dimension of a subbasis

SET logical array representing the different dependent subset:
SET(i,j) = .TRUE. indicates that the parameter aj belongs to the
dependent set number j

IR logical array: IR(i) = .TRUE. indicates that a; 1is irrelevant

Other variables are used as running subscripts or transitory storage and
there is no need to catalog them here.

Auxiliary Subroutine TRADUC (FOUND, N1, K)

This subroutine is used to translate logical information into parameter
names in order to ease the reading of the comments. It is a part of the
formatting of the output. The names of the parameters are given through the
COMMON/WRITE/, in the array WA. The output of the subroutine is found in the
array WR of the same COMMON.

General Organization of the Subroutine COR

COR has been divided for convenience into seven sections or logical
units.

Section 1- This section computes the norms AD, the normalized Gram
matrix C and the vector (DT)(ER) that is originally stored in the array DDA.
It also chooses the first basis vector as being the closest to ER (the corre-
sponding parameter would thus give the best fit if all the others had to be
discarded). This choice will be ignored, however, if MNS(N1 + 1) is not zero.
Control will be returned to the calling program at this point if MODE = -1.

Section 2- After some formatting the matrix C can be written optionally
and initialization of the variables performed.

Section 3- The reduction of the G matrix to an upper triangle is
performed along with the transformation of the vector DDA. Transformation of
columns of the matrix C is optional. At each step, the diagonal elements of
G are searched for the biggest and the smallest. The latter is compared to
the square of the threshold (S = THR2). In case of dependence, control is
transferred to section 4. Otherwise, basic and critical parameters are
printed out with their separations. The pivotal row and the corresponding
component of DDA are normalized (optionally the corresponding row of C) and
the next step is started. When all the vectors have been used (IREMN = 0)
control is transferred to section 5.

Section 4- The dependent parameter is discarded (MN = 0) and control
returns to section 3 if MODE = 0. Otherwise a backward elimination is per-
formed to obtain the components of the discarded vector on the subbasis and
the dependent subset stored in SET. Control is returned to section 3.
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Section 5- The solution vector DDA is finally obtained by backward
elimination (optionally the inverse of C).

Section 6- When dependent sets have been found, they are printed out with
their separations and the error in dependent parameters is computed and
printed. Then the dependent sets are united eventually (if MODE.GT.3).

Section 7- In this last section some logical and formatting manipulations
are performed and final comments are delivered.

Remark: The analysis of the G matrix and the inversions are all
performed in a double precision arithmetic.

A listing of the program is given in the following pages.
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C *SECTION 1% ———m———————- COMPUTATION OF THE GRAM MATRIX

1503
503

2500
500
1501

1502

1504
504

c D

502
1510
510

501

44

SUBROUTINE COR(N1,N3s THR .MQODE])
COMMON/BASIS/IBASIS(36),PIVI36),G(36,36)

COMMON/NVRT /AD(36),DDA(36),C(36,36)

COMMON/WRITE/WR(36),WA(36)
COMMON/PRM/MN(37)4MNS(37),SENSIV(36)4A(36},AMIN(36),AMAX(36)

1yDA(36) 4ER(2400),DER(2400,36) PRM
DIMENSION SEPAR(18),SET(18,18),CLEAR[36),CLEARB(36)yIR(36)

DOUBLE PRFCISION AD,DDA,GsCsGRADySySAVE,SMAX,SMIN,DET

LOGICAL =1 CLEAR,CLEARB,SET,IRsINV

DATA PEQ,COMMA/3H'Y =,1H,/

CALL CLOCK(ISTART)

MODE = MODE1

SMAX = 0.DO

DO 500 I=1,N1

AD(I) = 0.DO

IF(MN(I).,EQ.O0) GO TO 2500
DO 503 K=1,N3

AD(I) = AD(1) + DBLE(DER{K,I))}*%*2
IF(AD(I).LT«1.D-70) MN(I) = 0
AD(I) = DSORT(AD(I))

DO 500 J=1,N1

C{I,J) = 0.DO

DO 501 I=1,N1

IF(MN(I).EQ.O) GO 70 501
DO 502 J=1,1

IF(I EQ.J) GO TO 502
TF(MN(J) .EQ.0) GO TO 502
D0 504 K=1,4N3

ClIyd) = ClI4J) + DBLE(DER(K,I})*DBLE(DER(K,J})

C(I,Jd) = CUI,3)/7(AD(I)I*®AD(J))
CldeI) = C(I,4)

EFINE THE FIRST BASIC PARAMETER
IF{SMAX.GT.DABS(C(I,J}) ) GO TO 502
SMAX = DABS(C(I,J))

NEXT = 1

CONT INUE
Cti,I) = 1.D0
GRAD = 0.DO
DO 510 K=1,N3
GRAD = GRAD + DBLE(DER{K,I))*DBLE{(ER(K))
DDA(I) = GRAD/AD(1T)

CONT INUE
N2 = N1 + 1
TF(MNS(N2).NE.O) NEXT = MNS(N2)



C *SECTION 2%—=——==——m— e INTTIALTSATION== = = e e e e e e
IF(MODE.FO.=-1) RETURN
INV = MODE1.GE.10
IF (INV) MODE = MODF1-10
MN(N2) = 1
1F (MODE.EQ.O) GO TO 507
IF(N1.GT415) 60 TO 507

505 WRITE(6,6505)
6505 FORMAT( 1H1 410X, "PARAMETERS CORRELATION MATRIX?')
1506 DO 506 I=1,N1
506 WRITE(646506) WA(I)(C(1sJ)yd=1,1)
6506 FORMAT(/1X9A4,2X315F8e4)
507 IF(MODE.LT.4) 60 T0 1508
WRITE(6,601) WA(NEXT)

601 FORMAT('1 BASIC *',30X,"'" CRITICAL'/' PARAMETER!',5X*SEPARATION?
1,15X,"PARAMETER *,5X, "SEPARATION® /4XyA4/)
Co———- INITIALISE
1508 DO 508 I=1,N1
1509 DO 509 J=1,N1
IF(I4LE«1B8.ANDeJsLEL18) SET(1,J) = .FALSE.
G(I,J) = C(I,J)
509 C(I,4) = 0.DO
C(tl,I) = 1.D0
IR(I) = MN(I).EQ.O
MN(T) = ((MN(I)+1)/2)%2
CLEAR(I) = .FALSE.
ITF(.NOTLIR(I)) GO TO 508
DDA(T) 0.D0

CLEAR(I) = .TRUE.
508 MN(N2) = MINO(MN(N2),MN(I))
DET = 1.D0
S = THR¥*2
KG = 0
NSET = 0
PIVINEXT) = 1.
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C *SECTION 3¥=——————m ANALYSIS OF THE VECTOR SET—=—mmmmmmmm e oo
C THE NEW BASIS VECTOR IS NEXT
1 CLEAR(NEXT) = .TRUE.

IF(IR{NEXT)) GO TO 2004
KG = KG + 1

IBASIS(KG) = NEXT

IF(KG.GE.N1) GO TO 20

C COMPUTE THE NEW ARRAY OF REMNANT VECTORS
1002 DO 2 J=1,4N1

IF{CLEAR(J)) GO TO 2
c TRANSFORM INPUT VECTOR DDA
DDA(J) = DDA(J) — DDA{NEXT)I*G{JyNEXT)
TF{.NOT.INV) GO TO 1003
1203 DO 203 I=1,N1
203 C(Jys1) = C(JyI) — CINEXT,I)%G(J,NEXT)
1003 DO 3 I=1,J
IF(CLEARI(I)) GO TO 3
G(JsI) = G(JIsI) — GUISNEXTIRG(NEXT, 1)
G(I,J) = G(J,I)
3 CONTINUE
2 CONTINUE

C FIND THE DEPENDENT, THE OPTIMAL AND THE CRITICAL VECTORS
2004 IREMN = O
SMAX = 0.DO
SMIN = 1.D0
1004 DO &4 I=1,N1
IF(CLEAR(I)) GO TO 4
IREMN = IREMN + 1
SAVE = G{I,1)
IF(SAVE.GT.SMIN) GO TO 5
C STORE THE CRITICAL
SMIN = SAVE
10UT I
5 IF(SAVE.LE«SMAX) GO TO 4
C STORE THE UPTIMAL
SMAX = SAVE
NEXT I
4 CONTINUE
IF(IREMN.EQ.O) GO TO 20
C CHECK THE DEPENDENT
IF(SMINJLELS) GO TO 8
C COMPUTE THE VALUE OF THE DETERMINANT
PIVINEXT) = SMAX
DET = DET*SMAX —  ~
C NORMALISE ROW AND COLUMN NEXT BEFORE THE NEW CYCLE

SAVE = DSORT(SMAX)
IF(MODE.LT.4) GO TO0 1007
SMIN = DSOQRT(SMIN)
WRITE(6,600) WA(NEXT),SAVE,WA(IOUT),SMIN
600 FORMAT(4X A4, BXy1PE9.2,18XyA4, 8X,E9,2)
1007 DO 7 I=1,N1

IF{INV) CINEXT,I) = CENEXT,1)/SMAX
IF(CLEARI(TI})) GO 10 7
GINEXT,1) = GINEXT,I)/SMAX
7 CONTINUE
DDA (NEXT) = DDA(NEXT)/SMAX
GO TO 1
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C *SECTION 4%—————————m ANALYSIS OF THE DEPENDENCE WITHIN THE SUB~BASIS———--——-
8 NSET = NSET + 1
DDA (I10UT) =0.DO
MN(IOUT) = 0
CLEAR(IOUT) = .TRUE.
IF (MODE.EQ.0O) GO TO 2004
SET(IOUT,NSET) = .TRUE.
C FIND THE COMPONENTS OF TOUT ON THE BASIS
1009 DO 9 I=1,KG
KBACK = KG+1=I
K = IBASIS(KBACK)
IF(I.EQ.1) GO TO 9
1010 DO 10 J=2,1
KBACK1 = KG-I+J
K1 = IBASIS(KBACK1)
10 G(K,T0UT) = GI(K,I0UT) —- G(K,K1)*G(K1,IOUT)
9 CONTINUE
1011 DO 11 1=1,KG
K = IBASIS(I)
GRAD = SMIN + (GI(K, I0UT)#%2)*PIV(K)
IF(DABS(GRAD) JLE.S) GO TO 11
C MEMORISE THE DEPENDENT VECTOR IN THE LOGICAL ARRAY '#SET'?
SET(KyNSET) = .TRUE.,
C SET THE MAGIC NUMBER TO 1 FOR DEPENDENCE OF THE NEXT BASIS VECTOR WITH INOUI
MN(K) = 1
11 CONTINUE

C MEMORISE THE SEPARATION OF THE DEPENDENT VECTOR IN THE ARRAY ''SEPAR'!
SEPAR(NSET) = DSQRT(DMAX1(0.D0y SMIN) )
GO TO 2004
C *SECTION 5% ————=— SOLVE THE EQUATION G*DDA = D'*ER ( INVERT G EVENTUALLY)-
20 IF(KG.EQ.1) GO TO 1121

1120 DO 120 1=2,KG

KBACK = KG+1-1

K = IBASIS(KBACK)
2120 DO 120 J=2,1

KBACKL = KG-I+J

K1 = IBASIS(KBACKL)

IF (JNOT.INV) GO TO 120
1220 DO 220 L1 = 1,KG

L = IBASIS(L1)
220 C(KyL) = CIKsL) = G(KyK1I%C(K1,L)
120 DDA(K) = DDA(K) — G(K,K1)*DDA(KI1)
1121 DO 121 I=1,KG

K = IBASIS(I)
121 DDA(K) = DDA(K)/AD(K)
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C *SECTION 6% —=————————————mmm FIND THE STRUCTURE OF THE SET=~—=———mm—m—m——m-
IF(MODELED.O) G0 TO 9999 € E SET
IF(NSET.EQ.0) GO TO 24
IF (MODE.LT.5) GO TO 24

C WRITE THE DEPENDENT SETS

WRITE(6,621)
621 FORMAT(/11X,'DEPENDENT SETS OF PARAMETERS'/ 1X,'SEPARATION'/)

1022 DO 22 J=1,NSET
1023 DO 23 I=1,4N1
TF(MN(TI).EQ.,0.ANDSET(I,J) ) IoUT = 1
23 CLEAR(I) = SET(I,J)

CALL TRADUC(CLEARsN1,NW)
WRITE(64622) SEPAR(J), (WR{I),COMMA,I=1,NW)

622 FORMATI( 1X9E9e2/(10X4y24(A4,A1 ) /))

IF(MODE.LT.6) GO TO 22
K =20
1012 DO 12 I=1,N1
IF{MN(I).EQ.0) GO T0O 12
IF(JNOTLSET(I,J) ) GO TO 12
K=K+ 1
G (KyK) = =G{I,J0UT)*AD(ICUT) /AD(I)
WR(K) = WA(TI)

12 CONTINUE
14 WRITE(69614) WA(IOUT)PEQ, (WR(T),PEQyG(T41),I=1,4K)
614 FORMAT(/' TF ,A4,A3,% 1, THEN',6(3X,A4yA3,1PE9.2)/
1(19X, 613X 4A6,A3,E9.2)/7))
22 CONTINUE
24 WRITE(6,624) N1yTHRy (MN(K)yK=1,N1)
624 FORMAT('1 #x*xTHERE ARE?,I3,! PARAMETERS IN THIS PROBLEM .
1THE SEPARATION THRESHOLD WAS',E9.2 /' MAGIC NUMBER 1,3612/)
IF(NSET.EQ.O) GO TO 32
IF(MODE.LT.3) GO TO 32
C e sl desiok ok ek ek ok sk UNTINON OF THE DEPENDENT SETS s sk sl sk sk s sk sk e sk sheofe e s
1125 DO 125 I1=1,N1
125 CLEAR(T} = .FALSE.
NSETC = O
1025 DO 25 J=1.NSET
IF(CLEAR(J)) GO TO 25
NSETC = NSETC + 1
1026 DO 26 K=J,NSET
IF(CLEAR(K)) GO TO 26
1027 DO 27 I=1,Nl
TF(SET(1,J).AND.SET(I,K)) GO TO 1028

27 CONTINUE
GO TO 26

1028 DO 28 I=1,N1
28 SET(ILNSETC) SET(I,J)«0R.SETLI,4K)
SEPAR(NSETC) AMIN1({SEPAR(J),SEPAR(K))
CLEAR(K) = 4TRUE.
26 CONTINUE
25 CONTINUE
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C *SECTION 7% —--—————PREPARE AND WRITE THE FINAL DIAGNOSTIC-———————————mm

1029 N0 29 J=1,NSETC
1030 DO 30 I=1,N1
CLEAR(I) = (MN(I)eEQel) e ANDSET(I,J)
30 CLEARB(I) = (MN(I)eEN.O)LANDJSET(I,J)
CALL TRADHUC (CLEAR,N1,NW)
WRITE(69631) JySFPAR(J) 9 (WR(I),CUMMA,I=1,NW)

631 FORMAT(//' **x*%DEPENDENT SET NUMBER',13,! x5k SEPARATION =% ,E9,.2/
1Y ®=v/v % A TJRUE VALUE IS OBTAINED FOR  * /(v %V ,8X424(A4sA1 )/) )
CALL TRADUC {CLEARByN14NW)

WRITE(64629) (WRI(TI),COMMA,I=1,NW)
629 FORMAT(!' = IF IS KNOWN THE TRUE VALUE UOF "/ (' %0 ,8X424(A44A1 )/) )
29 CONTINUE
32 IF(MODE.LT.2) RETURN
CWRITE THE NAME OF INDEPENDENT, IRRELEVANT, DROPPED AND UNUSED PARAMETFRS
1033 DO 33 I=1,N1
CLEAR({I) = MNI{I).EQ.2
33 CLEARB{I) = IR(I)eAND.(MNS({I).NE.O)
CALL TRADUC(CLEAR ¢N1,NW)
WRITE(6,634) (WR(I)yCOMMA,I=14NW)
634 FORMAT(//' # INDEPENDENT PARAMETERS '/(' =t ,2X,24(A4y,A1 )/))
CALL TRADUC(CLEARRyN1,4NW)
WRITE(6,635) (WR(1),COMMA,I=1,NW)
635 FORMAT(Y =v /v % JRRELEVANT PARAMETERS v /(' 30 ,2X,24{A4,A1 )/))
1036 DO 36 I=1,N1
CLEARI{TI) = MNIIJ.EQ.0.AND MNS(I).NE.O
36 CLEARB(I) = MNS{I).EQ.0D
CALL TRADUC(CLEAR,N1,NW)
WRITE(6,637) {(WRI(I),COMMA,TI=1,NW)
637 FORMAT(Y v /v %  NOT ESTIMATEDY /(" %1 ,2X,24(A4,A1 )/))
CALL TRADUC(CLEARB 4N1,NW)
WRITE(64638) (WR(I)yCOMMA,I=1,NW)
638 FORMAT(' =xtv/v = NQOT USEDY /(' #v,2X,24(A4,A1 ) /))
CALL CLOCK(IEND)
TIME = (IEND-ISTART)/100.
WRITE(6,606) DET,TIME
606 FORMAT(///' NDET=',D22.15," TIME =',F9.3,' SEC')
9999 RETURN
END
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1001

50

SUBROUTINF TRADUC(FOUND,N1,K)
COMMON/WRITE/WR(36)4yWA{36)
DIMENSION FOUND({N1)

LOGICAL =1 FOUND

DATA BLANK,EMPTY/? 'y 'NONE?'/
K=0

DO 1 I=1,.N1

WR(I) = BLANK

TIF(.NOT.FOQUND(T) ) GO TO 1
K=K+ 1

WR(K) = WA(T)

CONTINUE

IF{K.GT.0) RETURN

K=1

WR(1) = EMPTY

RETURN

END



EXAMPLE OF COMPUTER OUTPUT

To illustrate the capabilities of the program, two examples of output are
given on figures 17 and 18. 1In the first example, a test matrix DER with
known relationships between the columns was input to the subroutine COR to
simulate a case of nonuniqueness where the model had 14 parameters (designated
here by the symbolic names Aj;, Ao, . . ., Ajy). The threshold was set equal
to 0.01 and A;g was discarded a priori (MNS(10) set to 0) and Ag was found
to be irrelevant. Figure 17 shows first the construction of the optimal basis.
It indicates that the first parameter (chosen by the user) is Az. Then Ay
is selected with a separation equal to 1 (indicating orthogonality between the
vectors aY/3A, and 3Y/0Ay). At the same time Az is found to be critical
with a separation of 0.347. The third parameter selected is Ag with again
a separation of 1, and A3 is still critical. At this point, however, Ag
was found to be dependent and was discarded, but this is displayed later on.
This process continues, the basis vectors becoming less and less orthogonal
(property OB3 of the optimal basis shown in appendix C).

Some parameters are missing in the first column; indeed they have been
discarded either during the analysis (as dependent parameters) or before (as
irrelevant or discarded a priori by the user right from the beginning). As
for the discarded parameters, they appear in the next display, where we are
told that Ag and Ag are dependent with a separation of 0.0025. Ag was dis-
carded and its value will be unchanged. The value of Ag that will be
obtained in the identification is a function of the value of Ag, and the next
line indicates that if the value of Ag 1is increased by one unit (absolute
variation - symbolized by a prime) then Ag will decrease by 40 units. This
information is very useful to estimate the error in Ag because of the lack
of knowledge of Ag, and also it can be used to correct a posteriori the value
of Ag 1if a better value has been obtained for Ag from other measurements,
without running the whole identification again.

Then another dependent set is found with three parameters, Aj;, Ay, and
A3. The parameter A3z was discarded and the next line indicates how a varia-
tion in Az will affect the values found for A; and A,. The last dependent
set includes four parameters and Aj;, was discarded. Note that Ag appears
again, therefore the first and the last set will be united in the final
results.

The final results are given next on this output. Two dependent sets
appear; Ag and Ay, have been discarded from the first and their values should
be known in order to obtain correct values for Ag, Aj;;, and Aj3. In the same
way A3 was discarded from the second set. Then the names of the independent
and irrelevant parameters are displayed. Finally, four parameters have been
discarded and will not be estimated in this identification, and also, the
computer reminds us that Aj;p was not used at all because of the a priori
decision to do so at the beginning of the identification. The last piece of
information concerns the value of the determinant of the reduced Gram matrix
(that is after suppression of rows and columns corresponding to the discarded
parameters) and, gives the computation time in seconds. All of these results
agreed exactly with the known initial data.
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Another example is shown on figure 18. It corresponds to the real case
(case A) of the platform identification, when the reaction wheels are not used
(natural damping). The dependence between the parameters Jxz, Jx, Jz and ajj
is found and the dependence coefficients are denoted by the ''prime'" following
the name, so that the last line of the first set of comments should read: <f
Jxz 1s incremented by one unit, then the value obtained for Jx will change
by an amount of 2.55 10~1 unit, Jz by 4.0 units and a3 will be decreased
by 4.83 10~% unit. Note that the analysis of this 13 parameter problem only

required 2 sec of computation time.
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TABLE 1.- RESULTS OF THE IDENTIFICATION FOR TWO DIFFERENT

IDENTIFICATION RUNS IN CASE A (FREE OSCILLATION CASE)

Name Value LError bounds l Units lSensitiVity Dep?ndency
L . o1 index
Run 1: Final results when no parameter is discarded
(threshold = 0)

Jx 1.23 102 +1. slug-ft? 12.4 2

Jy 1.22 102 +2. 6.7 2

J> 1.60 10? +19 1.3 2
Ixy |-3.24 +1. .32 2
Jxz 9.64 +5 .54 2
Jyz |-1.31 5. .036 2
DMPy | 3.25 102 | 2.2 1072 |ft-1b-sec .037 2
DMPy, | 3.09 1072 | +2.8 10-2 l .018 2
pMP, | 1.19 10-1 +6.9 1072 .016 2

by | 9.87 103 | +1.8 1073 ft-1b .057 2

b, 7.77 1071 +7.6 10-3 12.5 2
als 2.53 10-" +2.8 1075 .13 2
Run 2: Final results when Jx, 1s discarded by the dependence

analysis (threshold = 0.02)

Jx 1.18 102 +1.3 slug-ft2 12.7 1

Jy 1.20 102 +1.8 7.7 2

Jy 1.21 102 +7.9 1.06 1
Jxy |-1.70 +1.2 .17 2
Jxg, |~1.67 0 .091 0
Jys 2.44 1072 +2.6 .00085 2
DMPy | 2.78 1072 +1.6 10-2 |ft-1b-sec .032 2
DMPy, | 5.14 10-2 +2.5 10-2 .030 2
DMP, | 8.03 1072 +3.5 1072 .014 2

by 1.00 10-2 +1.5 1073 ft-1b .055 2

b, 7.73 1071 +6.8 10-3 12.5 2
aj3 |-1.89 107" +1.4 107° .15 1




[N

R

TABLE 2.- RESULTS OF THE IDENTIFICATION IN CASE B (REACTION

WHEELS DAMPING)

Name Value Error bounds Units Sensitivity Depiﬁgzzcy
Jx | 119 5.3 slug-ft? 1.32 2
Jy | 125 +5 1.7 2
J, | 213 +130 .02 2

Ixy 4.7 2.4 .2 2

Jxz -8.0 2.7 .03 2

Jyz -6.1 +2.6 Y .02 2
o 67 +4 ft-1lb-sec 1.4 2
ap | 121 +3.5 .7 2
a3 | 147 +16 v .13 2
by -3.4 10-3 +1.1073 ft-1b .09 2
b, -.76 +1.3 1072 3.7 2

a3 -1.0 10-3 +3.10°% .2 2

aig .137 +2.10°2 .38 2

ary 135 +7.10-3 1.2 2

aig 2122 0 Y .0 0
cy 4.24 1072 +1.3 1072 cps .13 2
co 3.30 102 +1.3 10-2 .13 2
cs3 4.40 10-2 +1.8 1072 & .14 2

asy 1.36 +2.10°2 ft-1b-sec 4.5 2

ars 1.35 +3,10"2 4.0 2

asy 1.00 0 0 0
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Figure 16.- Measured and computed time histories of the roll rate (Case B).




RASIC CRITICAL

PARAMETER SEPARATION PARAMETER SEPARATION
A2
A4 1.00E 00 A3 3.47E~-01
A8 1.00E 00 A3 3.47E-01
Al12 1.00E 00 A3 3.47E-01
Al 9.57E-01 A3 3.47E-01
Ab 7.11E-01 Al4 4o 66E-01
All 7.07E~01 AT 9.90E-02
Al3 7.07E-01 A7 9.90E-02
AT 9.90E-02 AT 9.90E-02
DEPENNENT SETS OF PARAMETERS
SFPARATION
0.25€E-02
AB, A9,
IF A9!' = 1, THEN A8Y' =-4.01E 01
0.38E-02
Al, A2, A3,
1F A3' = 1, THEN AlY =-2,01E 0O A2' =-1.00E 01
0.71E~08
AR, A].l, A131 Al4y
IF Al4at' = 1, THEN A8' =-2,00E 00 Al1l1t' =-3.00F 00 A13!

*%x%xTHFRE ARE 14 PARAMFTERS TN THIS PROBLEM .
MAGIC NUMBFR 1 1t 0 20 22 1 00172 10
THE SEPARATION THRFSHOLD WAS 0.10F-01

3

*PDEPENDENT SET NUMBER ) *%xkSEPARATION = 0,71F-08

3+ 3 3¢

A TRUFE VALUE 1S OBTAINED FOR
A8, All, A13,

IF IS KNOWN THE TRUE VAL UE OF
A9, Als4,

3 3¢ 3¢

*%NFPENDENT SET NUMBER 2 Xx%SEPARATION = 0.38F-02

A TRUE VALUE TS BTAINED FMR

33t 3 3%

Alg AZq
* IF IS KNOWN THF TRUE VALUE 0F
* A3,

INDEPENDENT PARAMETERS
A4y, A6y AT, Al2,

TRRELEVANT PARAMETERS
AS,

NOT ESTIMATER
A3, A5, A9, Als4,

363 36 3 3+ 3¢ 3¢ 3¢ 3t

NOT USED
Al10,

* 3

NFT= 0.1134488448R4488D-02 TIME = 0.734 SEC

== 1.00F 00

Figure 17.- Computer analysis in the test case of 14 parameters.
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BASIC CRITICAL
PARAMETER SEPARATION PARAMETER SEPARATION
Jz
BY 1.00D 00 JXZ 2.77D-01
DMPY 9.77D-01 JXZ 2¢51D-01
JY 9.23D-01 JdXZ 2.510-01
DMPZ 8.,07D-01 JYZ 1.02D-01
DMPX 5.38D0-01 Jyz 9.57D-02
JX 5.16D~01 Jy £ Je55D~-02
Al3 4455D-01 JXZ 3.04D~-02
Jyz 4427D-02 JXY 3.13D~-02
BZ 3.11D0-02 JXY 2+79D-02
JXY 2.77D-02 JXY 2.77D-02

DEPENDENT SETS OF PARAMETERS

SEPARATION

0.48E-02

IF JXZ?

JXe JZy JIXZ, Al3,

= 1, THEN JX?' = 2,55D-01 JZv = 4,00D 00 A13?

%% %THERE ARE 13 PARAMETERS IN THIS PROBLEM .

MAGIC NUMBER 1 2 1 20 22 220221

*3kDEPENDENT SET MUMBER 1 *¥=SEPARATION = 0.,48E~02

* A TRUE VALUE IS OBTAINED FOR

e
3

s
kS

*

JY,

*o% ¥ %

N ONE o

a
¥

JIXZ,

% %

3t

BX,

JXy JZs AL3,

IF IS KNDOWN THE TRUE VALUE OF

JXZy

INDEPENDENT PARAMETERS

JXY, JYZ,DMPX,DMPY,DMPZ, BY, BZ,

TRRELEVANT PARAMETERS

NOT ESTIMATED

NOT USED

DET= 0.113607241258916D-10 TIME = 1.910 SEC

-4.83D-06

SEPARATION THRESHOLD WAS 0.20E~01

Figure 18.- Computer analysis of the identification of the parameters of the

platform in the free oscillation case (Case A, run 2).
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